弱問下,反硝化細菌為兼性菌,反硝化需要在缺氧下進行,那么反硝化在厭氧環境下是否可以進行?
現在一個水處理項目,處理生活污水的,欲培養硝化菌和反硝化菌,我是新手,希望有經驗的大俠介紹一下經驗,如何培養硝化菌和反硝化菌,謝謝了
好氧/厭氧、異養/自養、硝化/反硝化
反硝化菌在污水脫氮中應用反硝化是在反硝化細菌的作用下,以硝酸鹽作為最終電子受體而進行的無氧呼吸過程.從污水脫氮的角度論述反硝化在污水脫氮中的作用、污水脫氮的機理、污水脫氮過程中反硝化作用的影響因素等.從反硝化的角度出發,論述了反硝化細菌的類群、反硝化作用的機理、反硝化細菌細胞中參與反硝化過程的關鍵酶.反硝化菌在污水脫氮中應用反硝化細菌是一種能引起反硝化作用的細菌。多為異養、兼性厭氧細菌,如反硝化桿菌、斯氏桿菌、螢氣極毛桿菌等。 分布用途 它們在氙氣條件下,利用硝酸中的氧,氧化有機物質而獲得自身生命活動所需的能量。反硝化細菌廣泛分布于土壤、廄肥和污水中。可以將硝態氮轉化為氮氣而不是銨態氮,與硝化細菌作用不完全相反。目前主要應用于污水處理,如景觀水治理,城市內河治理,水產養殖處理等,其中水產養殖污水處理應用最為廣泛 產品特點 采用優良反硝化菌株經特殊工藝發酵而成。菌株反硝化能力強,能夠以亞硝態氮和硝態氮作氮源,活化簡單,繁殖迅速,作用效果顯著,24小時可見效。針對養殖水體亞
厭氧氨氧化與短程硝化反硝化的區別,很多小伙伴容易搞混,本文從兩個工藝本身的原理出發寫一寫兩個工藝的異同點!
污水脫氮是在生物硝化工藝基礎上,增加生物反硝化工藝,其中反硝化工藝是指污水中的硝酸鹽在缺氧的條件下,被微生物還原成氮氣的生化反應過程。導致出水總氮超標的原因有很多種,主要是:
厭氧氨氧化 vs短程硝化反硝化
一、實驗器材與藥劑 1. 20L實驗桶(透明最好),若是其他體積的實驗桶可同比例增加投加菌種和藥劑量。 2. 攪拌器一個。 3. 磷酸二氫鉀少許。
如果流出曝氣池的活性污泥混合液溶解氧低于0.5,并且碳氮比嚴重失衡的話,停留在二沉池的活性污泥就會出現上浮的現象。那么溶解氧低0.5我倒是能理解導致后面發生反硝化,但后面的并且碳氮比嚴重失衡怎么解釋?
先大致介紹下我們的廢水:發酵廢水,廢水主要是成分是醇類COD25000,其他還有一些清洗廢水,主要含NaOH,COD5000,另外一部分是菌體蛋白,成分很復雜COD50w左右,但總量只進3%。 廢水先進調節池均質后進UASB系統,出水一部分去稀釋原水,一部分進好氧曝氣。試運行半年左右,COD基本達標,但總氮超標,于是年底清池改造,將原生化池改隔斷成4個小池,類似前置反硝化,本人也是廢水處理小白,去年也是臨危受命,雖然是生物工程專業,也讀了些相關書籍,可以是經驗很有限,現在準備調試了,大神們能不能
我是剛接觸污水處理的小白,之前看資料硝化是把N轉化為硝酸鹽,反硝化把硝酸鹽轉化為氮氣,所以我覺得污水除氮應該先經過硝化再反硝化啊,為什么有的工藝是先反硝化再硝化?這樣能除去N嗎?
根據傳統生物脫氮理論,脫氮途徑一般包括硝化和反硝化兩個階段,硝化和反硝化兩個過程需要在兩個隔離的反應器中進行,或者在時間或空間上造成交替缺氧和好氧環境的同一個反應器中;實際上,較早的時期,在一些沒有明顯的缺氧及厭氧段的活性污泥工藝中,人們就層多次觀察到氮的非同化損失現象,在曝氣系統中也曾多次觀察到氮的消失。在這些處理系統中,硝化和反硝化反應往往發生在同樣的處理條件及同一處理空間內,因此,這些現象被稱為同步硝化/反硝化(SND)。 1、同步硝化反硝化的優點 對于各種處理工藝中出現的SND現象已有大量的報道,包括生物轉盤、連續流反應器以及序批示SBR反應器等等。與傳統硝化-反硝化處理工藝比較,SND具有以下的一些優點: 1、 能有效地保持反應器中pH穩定,減少或取消堿度的投加; 2、減少傳統反應器的容積,節省基建費用; 3、 對于僅由一個反應池組成的序批示反應器來講,SND能夠降低實現硝化-反硝化所需的時間; 4、 曝氣量的節省,能夠進一步降低能耗。 因此SND系統提供了今
硝化細菌統歸于硝化桿菌9個屬:硝化桿菌屬(Nitrobacter)、硝化刺菌屬(Nitrospina)、硝化球菌屬(Nitrococcus)、亞硝化單胞菌屬(Nitrosomonas)、亞硝化螺菌屬(Nitrosospira)、亞硝化球菌屬(Nitrosococus)和亞硝化葉菌屬 (Nitrosolobus),共14種,除上述9屬外還有另外2屬(硝化螺菌屬Nitrospira和亞硝化弧菌屬Nitrosovibrio)共20種。
沉淀池發生厭氧反應,反硝化反應,及污泥老化時,均可能導致出水渾濁,請問在現象上有什么區別?出水異常時如何根據現象判斷原因?
短程反硝化_厭氧氨氧化工藝研究進展_賴城
目前,關于污水的N的去除受到了非常大的重視。那么,對于學環保的而言,污水中N的有效去除,最佳的方法還是硝化-反硝化反應。傳統生物脫氮方法在廢水脫氮方面起到了一定的作用,但仍存在許多問題。如:氨氮完全硝化需消耗大量的氧,增加了動力消耗;對C/N比低的廢水,需外加有機碳源;工藝流程長,占地面積大,基建投資高等。近年來,生物脫氮領域開發了許多新工藝,比方說短程硝化反硝化法,大家談談對短程硝化反硝化法的理解吧。最好請做個這方面研究的朋友多多參與!
⑴ 厭氧氨氧化基本概念與原理:氨氮的氧化主要是在好氧或限氧條件下進行。理論上,氨氮可以作為反硝化的無機電子供體。這一反應的自由能與好氧硝化過程的相當。依據此熱力學計算,科學界在18世紀就預測了可能有氧化氨氮為N2的兩種自養型微生物的存在,而這一過程的真正發現卻是在兩個世紀之后荷蘭Delft大學在多階段廢水處理系統中試研究中發現,隨著N03的消耗量增加,反應器出水中NH3消失,同時伴隨有N2產生量的增加。他們獲得的最大NH3去除負荷為1.2nmol/(L.h)。在他們的連續流試驗中,通過氮的氧化還原平衡式也表明,在厭氧條件下,每減少1moI NH3,消耗o.6m01NQ,產生o.8m01N3G這一新的發現被稱為ANAMMOX。即在厭氧條件下氨氮以亞硝破氮作為電子受體直接被氧化成氮氣的過程,其反應式如下: 在ANAMMOX過程中,一個單位的亞硝酸根和一個單位的銨結合而釋放出氮氣。這意味著在應用中需要注意這個過程的兩個方面:在廢水中的銨需要有一半氧化成亞硝鼓鹽(要防止全部氧化成亞硝釀鹽),并且需要對反應器進行適宜的設計,使其能有效地持留ANAMMOX菌群的生物量,以使AN
硝化菌對廢水中的有毒物質比較敏感,抑制物的存在將嚴重影響氨氮的去除效率,我想問一下哪些物質會對硝化菌產生抑制作用? 哪些參考文獻對這方面有較多的論述? 針對不同的抑制物質,工程實踐中怎樣操作有利于避免或緩解抑制?
我在污染物排放標準上怎么沒有看到總氮的要求呢?如果不要求總氮,那為何氨氮變成硝態氮以后還要反硝化去除呢?[ 本帖最后由 water-hierarch 于 2009-7-17 14:31 編輯 ]